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Abstract

The dual-phase-lagging heat conduction equation is shown to be well-posed in a ®nite 1D region under Dirichlet,

Neumann or Robin boundary conditions. Two solution structure theorems are developed for dual-phase-lagging heat

conduction equations under linear boundary conditions. These theorems express contributions (to the temperature

®eld) of the initial temperature distribution and the source term by that of the initial time-rate change of the tem-

perature. This reveals the structure of the temperature ®eld and considerably simpli®es the development of solutions of

dual-phase-lagging heat conduction equations. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

By lumping microstructural e�ects into delayed tem-

poral responses in the macroscopic formulation, Tzou

[1] proposed a dual-phase-lagging constitutive equation

for heat conduction, relating the temperature gradient

rT at a material point p and time t � sT to the heat ¯ux

density vector q at p and time t � sq through material

thermal conductivity k

q�p; t � sq� � ÿkrT �p; t � sT �: �1�
Two delay times sT and sq are regarded as intrinsic

thermal or structural properties of the material. The

former is due to the microstructural interactions such as

phonon±electron interaction or phonon scattering, and

is termed as the phase-lag of the temperature gradient.

The latter is, on the other hand, interpreted as the re-

laxation time accounting for the fast-transient e�ects of

thermal inertia, and is named as the phase-lag of the

heat ¯ux.

Expanding rT and q with respect to time t by Tay-

lor's series and retaining only the ®rst-order terms in sT

and sq, we obtain a linear version of (1) at the point p
and time t [1]

q� sq
oq

ot
� ÿk rT

�
� sT

o
ot
�rT �

�
�2�

which is known as the Je�reys-type constitutive equation

of heat ¯ux [2]. Eliminating q from (2)and the classical

energy equation leads to the dual-phase-lagging heat

conduction equation 1 that reads, if all thermophysical

material properties are assumed to be constant,

1

a
oT
ot
� sq

a
o2T
ot2
� DT � sT

o
ot
�DT � � f �P ; t�; �3�

where a is the thermal di�usivity of the material, D the

Laplacian, and f stands for terms from internal heat

sources. The dual-phase-lagging heat conduction equa-

tion forms a generalized, uni®ed equation that reduces
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1 For the heat conduction involving heat ¯ux-speci®ed

boundary conditions, it is more convenient to use the dual-

phase-lagging heat conduction equation in terms of the heat

¯ux q or the heat ¯ux potential / de®ned by q � r/. It can be

obtained by eliminating T from Eq. (2) and the classical energy

equation. The /-version heat conduction equation has exactly

the same structure as its T -version (3). The 1D q-version heat

conduction equation is also of the same structure as its T -

version. A mixed formulation for both q and T directly by two-

coupled energy and constitutive equations is more general than

Eq. (3) in view of the applications of the dual-phase-lagging

model. The readers are referred to Tzou [3, pp. 30±34] for

details.
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to the classical parabolic heat conduction equation when

sT � sq � 0, the hyperbolic heat conduction equation

when sT � 0 and sq � s with s as the relaxation time

de®ned by Chester [4], the energy equation in the pho-

non scattering model [2,5] when

a � sRc2

3
; sT � 9

5
sN; sq � sR;

and the energy equation in the phonon±electron inter-

action model [6±8] when

a � k
ce � cl

; sT � cl

G
; sq � 1

G
1

ce

�
� 1

cl

�ÿ1

:

In the phonon scattering model, c is the average speed of

phonons (sound speed), sR the relaxation time for the

umklapp process in which momentum is lost from the

phonon system, and sN is the relaxation time for normal

processes in which momentum is conserved in the pho-

non system. In the phonon±electron interaction model, k
is the thermal conductivity of the electron gas, G the

phonon±electron coupling factor, and ce and cl are the

heat capacity of the electron gas and the metal lattice,

respectively. This, with the rapid growth of microscale

heat conduction of high-rate heat ¯ux, has given rise to

the research e�ort on solutions of dual-phase-lagging

heat conduction equations. The solutions of 1D heat

conduction under some speci®c initial and boundary

conditions were developed in [1,3,9±13]. Wang and

Zhou [14] developed methods of measuring sT and sq

and obtained analytical solutions for regular 1D, 2D

and 3D heat conduction domains under essentially ar-

bitrary initial and boundary conditions. While the dual-

phase-lagging model yields a better prediction of

microscale heat conduction and is admissible within the

framework of the second law of the extended irreversible

thermodynamics [3], some fundamental issues such as

well-posedness and solution structure have been left

unaddressed.

The present work aims to examine the well-posedness

and solution structure of initial±boundary value prob-

lems for dual-phase-lagging heat conduction equations.

In particular, we establish the existence, uniqueness and

stability of the solution with respect to initial conditions

for the dual-phase-lagging heat conduction in a ®nite 1D

region under homogeneous Dirichlet, Neumann or

Robin boundary conditions. We also extend the two

theorems of solution structure for the hyperbolic

heat-conduction in [15] to the dual-phase-lagging heat

conduction under linear homogeneous boundary con-

ditions. Such theorems relate contributions (to the

temperature ®eld) of the initial temperature distribution

and the source term to that of the initial time-rate

change of the temperature. This reveals the structure of

the temperature ®eld and signi®cantly simpli®es the de-

velopment of solutions of dual-phase-lagging heat con-

duction equations.

2. Well-posedness

In this section, we consider the well-posedness of the

1D initial±boundary value problem with homogeneous

Dirichlet (®rst kind), Neumann (second kind) and Robin

(third kind) boundary conditions

1
a Tt�x; t� � sq

a Ttt�x; t� � Txx�x; t�
�sT Ttxx�x; t�;

�0; l� � �0;�1�;
ÿ k1Tx�x; t� � h1T �x; t�f gjx�0 � 0;
fk2Tx�x; t� � h2T �x; t�gjx�l � 0;
T �x; 0� � /�x�; Tt�x; 0� � w�x�;

8>>>>>><>>>>>>:
�4�

where k1; k2; h1 and h2 are the nonnegative real constants

and satisfy

k1 � h1 6� 0 �5�
and

k2 � h2 6� 0: �6�
The readers are referred to Tzou [3] and Fournier and

Boccara [16] for physical implications and limitations of

three boundary conditions.

If all combinations of the boundary conditions of the

®rst, second and third kinds are considered, for a ®nite

region 06 x6 l, there exist nine combinations of

boundary conditions. We detail the well-posedness for

the case with the third (Robin) boundary condition at

both x � 0 and x � l, i.e., nonzero ®nite k1; h1; k2 and h2.

The results for the remaining eight combinations are

Nomenclature

l length

q heat ¯ux vector

p material point

T temperature

t time

x coordinate

k thermal conductivity

Greek symbols

a thermal di�usivity

q density

s thermal relaxation time

sq phase-lag of the heat ¯ux vector

sT phase-lag of the temperature gradient

r gradient

D Laplacian
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easily obtained by a similar approach and choosing the

values of H1 and H2 as zero, ®nite or in®nite, and are

listed in the tables if appropriate. Here H1 and H2 are

de®ned by

H1 � h1

k1

�7�

and

H2 � h2

k2

: �8�

2.1. Existence

For the existence, we use the separation of variables to

®nd a solution of (4). Assuming separation of the vari-

ables in the form

T �x; t� � X �x�C�t�: �9�
A substitution of (9) into (4) leads to

X �x� 1

a
C0�t�

�
� sq

a
C00�t�

�
� X 00�x��C�t� � sT C0�t��

which becomes, after dividing by X �x��C�t� � sT C0�t��, 2

1
a C0�t� � sq

a C00�t�
C�t� � sT C0�t� �

X 00�x�
X �x� ;

where the primes on the functions X and C represent

di�erentiation with respect to the only variable present.

Therefore, we have the separation equation for the

temporal variable C�t�
sqC

00�t� � �1� asT k�C0�t� � akC�t� � 0 �10�
and the homogeneous system for the spatial variable

X �x�
X 00�x� � kX �x� � 0; �0; l�; �11�

ÿk1X 0�0� � h1X �0� � 0; �12�

k2X 0�l� � h2X �l� � 0; �13�
where k is the separation constant.

Integrating Eq. (11) from x � 0 to x � l after multi-

plying X �x� yieldsZ l

0

X �x�X 00�x� dx� k
Z l

0

X 2�x� dx � 0 �14�

which becomes, by making use of integration by parts toR l
0

X �x�X 00�x� dx;

k
Z l

0

X 2�x� dx � ÿX �x�X 0�x�jl0 �
Z l

0

�X 00�x��2 dx: �15�

By (12) and (13)

X 0�0� � H1X �0�;

X 0�l� � ÿH2X �l�:
Therefore, (14) leads to

k
Z l

0

X 2�x� dx � H1X 2�0� � H2X 2�l� �
Z l

0

�X 00�x��2 dx

which implies

kP 0: �16�
If k � 0, however,

X �x� � c1x� c2 �17�
with c1 and c2 as two constants. The two boundary

conditions (12) and (13) thus lead to

c1 ÿ H1c2 � 0;

c1�1� H2l� � H2c2 � 0

which yield c1 � c2 � 0 by noting that H1 > 0 and

H2 > 0. We therefore arrive at a trivial solution when

k � 0. Hence,

k � b2 > 0: �18�
The general solution of (11) is thus

X �x� � a cos�bx� � b sin�bx�;
where a and b are two constants. The two boundary

conditions (12) and (13) thus yield

bbÿ H1a � 0;

ÿba sin�bl� � bb cos�bl� � H2a cos�bl�
� H1b sin�bl� � 0

which lead to

ctg�lb� � 1

l�H1 � H2� lb

"
ÿ �lH2�2

lb

#
: �19�

2 For a nontrivial solution, both X �x� and C�t� cannot be

vanished for all x or t. C�t� � sT C0�t� cannot be trivial neither.

Otherwise, C�t� must satisfy both

C�t� � sT C0�t� � 0

and

1

a
C0�t� � sq

a
C00�t� � 0

which have no solution. Dividing by X �x�C�t� as in the classical

separation of variables would lead to

1

a
C0�t�
C�t� �

sq

a
C00�t�
C�t� �

X 00�x�
X �x� � sT

X 00�x�C0�t�
X �x�C�t�

whose last term is nonseparable. This seems to conclude in the

literature that the method of separation of variables fails to

apply (see, for example, [3, p. 48]).

L. Wang et al. / International Journal of Heat and Mass Transfer 44 (2001) 1659±1669 1661



Let

f �x� � ctg xÿ 1

l�H1 � H2� x

"
ÿ �lH2�2

x

#
; �20�

lb is thus the zero point of f �x�. As f �x� is an odd

function and k � b2, we only need the positive zero

points of f �x�. Let bm be the mth positive zero point of

f �x�. Hence, we have the eigenvalues,

km � bm

l

� �2

; m � 1; 2; . . . �21�

Without taking account of arbitrary constants a and b,

the eigenfunctions can be written as

bm

lH1

cos
bmx

l

� �
� sin

bmx
l

� �

�
��������������������������
1� bm

lH1

� �2
s

sin
bmx

l

�
� /m

�
; �22�

where

tg /m �
bm

lH1

: �23�

Finally, we can write the eigenfunction Xm�x� as

Xm�x� � sin
bmx

l

�
� /m

�
�24�

without taking account of arbitrary constants.

Consider now Eq. (10) that reads, after substituting

km in Eq. (21),

sqC
00
m�t� � �1� asT b2

m�C0m�t� � ab2
mCm�t� � 0: �25�

Two characteristic roots of the auxiliary equation of (25)

are

r1;2 � mm � ilm; �26�
where

mm � ÿ 1� asT b2
m

2sq
�27�

and

lm �
����������������������������������������������
4asqb

2
m ÿ �1� asT b2

m�2
q

2sq
: �28�

Note that the lm can take real or imaginary values.

Therefore,

Cm�t� � emmt�Am cos�lmt� � Bm sin�lmt��; �29�
where Am and Bm are constants, and

sin�lmt� � sin�lmt� if lm 6� 0;
t if lm � 0:

�
�30�

Applying the principle of superposition to (4) yields

T �x; t� �
X1
m�1

emmt�Am cos�lmt� � Bm sin�lmt��Xm�x�: �31�

Applying the ®rst initial condition T �x; 0� � /�x� leads

toX1
m�1

AmXm�x� � /�x� �32�

which requires, by the Sturm±Liouvill theory that

Xm�x� �m � 1; 2; . . .� forms a complete orthogonal set in

06 x6 l,

Am � 1

Mm

Z l

0

/�x�Xm�x� dx; m � 1; 2; . . . �33�

Here,

Mm �
Z l

0

X 2
m�x� dx �

Z l

0

sin2 bmx
l

�
� /m

�
dx

� l
2

1

�
ÿ sin bm

bm
cos�bm � 2/m�

�
: �34�

Also,

Tt�x; t� �
X�1
m�1

fmmemmt�Am cos�lmt� � Bm sin�lmt��

� emmt�ÿAmlm sin�lmt�
� Bm l

m
cos�lmt��gXm�x�;

where

l
m
� lm if lm 6� 0;

1 if lm � 0:

�
�35�

Applying the second initial condition Tt�x; 0� � w�x�
yieldsX�1
m�1

�mmAm � Bml
m
�Xm�x� � w�x� �36�

which requires, by the Sturm±Liouvill theory,

mmAm � Bml
m
� 1

Mm

Z l

0

w�x�Xm�x� dx

i.e.,

Bm � 1

Mml
m

Z l

0

w�x�Xm�x� dxÿ mmAm

l
m

: �37�

Therefore, we have found a solution of (4)

T �x; t� �P1
m�1 emmt�Am cos lmt � Bm sinlmt�Xm�x�;

Am � 1
Mm

R l
0
/�x�Xm�x� dx;

Bm � 1
Mml

m

R l
0
w�x�Xm�x� dxÿ mm

l
m

Mm

R l
0
/�x�Xm�x� dx;

8>><>>:
�38�

with mm; lm and l
m

de®ned by Eqs. (27), (28) and (35),

respectively.
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Actually, the solution of (4) under the other eight

boundary conditions can also be written in the form of

(38). However, eigenvalues km, eigenfunction Xm�x� and

normal square Mm are di�erent for the nine combina-

tions of boundary conditions (see Table 1).

2.2. An inequality

To establish the uniqueness and stability of solution

of (4), we need ®rst to develop an important inequality

for (4). Once again, we detail the development for the

case with the Robin boundary condition at both x � 0

and x � l, and list the ®nal results for the remaining

eight combinations of boundary conditions. In the

process of deriving the inequality, a commonly used

assumption is made that the order of di�erentiation is

interchangeable for some high-order partial derivatives

of T with respect to t and x. While the continuity of the

associated high-order partial derivatives forms the suf-

®cient condition for such an interchange, it is not the

necessary condition. Therefore, the interchange of

the order of di�erentiation could still be valid even in the

region where some high-order partial derivatives of T
could be discontinuous (the dissipating or damping

feature of dual-phase-lagging heat-conduction equations

would hinder the appearance of such discontinuity). As

both the necessary and su�cient conditions are un-

available in mathematics, it appears not possible, at the

present, to state what are the conditions that T should

possess in order to be able to interchange the order of

di�erentiation.

Note that

o
ot
�T � sqTt�2 � 2�T � sqTt��Tt � sqTtt�

� 2a�T � sqTt��Txx � sT Ttxx� �39�

in which the heat-conduction equation in (4) has been

used. Integrating (39) with respect to x from x � 0 to

x � l and using integration by parts lead toZ l

0

o
ot
�T � sqTt�2 dx

� 2a
Z l

0

�T � sqTt��Txx � sT Ttxx� dx

� 2a �T �l; t�
�

� sqTt�l; t���Tx�l; t� � sT Ttx�l; t��

ÿ �T �0; t� � sqTt�0; t���Tx�0; t� � sT Ttx�0; t��

ÿ
Z L

0

T 2
x

�
� 1

2
�sT � sq� o

ot
T 2

x � sT sqT 2
tx

�
dx
�
: �40�

Using two boundary conditions in (4), Eq. (40) can be

rearranged to

aH2�sT � sq� o
ot

T 2�l; t� � aH1�sT � sq� o
ot

T 2�0; t�

�
Z l

0

o
ot

T
�"
� sq

oT
ot

�2

� a�sT � sq� oT
ox

� �2
#

dx

� ÿ2aH2T 2�l; t� ÿ 2aH1T 2�0; t�

ÿ 2a
Z L

0

oT
ox

� �2

dxÿ 2asT sqH2

oT �l; t�
ot

� �2

ÿ 2asT sqH1

oT �0; t�
ot

� �2

ÿ 2asT sq

Z l

0

o2T
oxot

� �2

dx

�41�
which is negative semi-de®nite because a; sT ; sq;H1 and

H2 are all not negative, i.e.,

aH2�sT � sq� o
ot

T 2�l; t� � aH1�sT � sq� o
ot

T 2�0; t�

�
Z l

0

o
ot
�T
h
� sqTt�2 � a�sT � sq�T 2

x

i
dx6 0: �42�

Integrating (42) with respect to t from t0 to t1 (t1 P t0)

yields an important inequality

g�t1�6 g�t0�; 8t1 � t0; �43�
where

g�t� � a�sT � sq��H1T 2�0; t� � H2T 2�l; t��

�
Z l

0

f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2
x �x; t�g dx:

�44�
The inequality for the other eight boundary condi-

tions can also be written in the form of (43). How-

ever, the de®nition of g�t� is di�erent and is listed in

Table 2.

2.3. Uniqueness

Suppose that T1�x; t� and T2�x; t� are two solutions of

(4). The di�erence between them

W �x; t� � T1�x; t� ÿ T2�x; t�

must be the solution of the initial±boundary value

problem,

1
a Wt�x; t� � sq

a Wtt�x; t� � Wxx�x; t�
�sT Wtxx�x; t�; �0; l� � �0;�1�;
ÿk1Wx�0; t� � h1W �0; t� � 0;

k2Wx�l; t� � h2W �l; t� � 0;

W �x; 0� � 0;Wt�x; 0� � 0:

8>>>>>><>>>>>>:
�45�

For the case with the Robin condition at both x � 0 and

l, an application of (43) to (45) yields, with t1 � t > 0

and t0 � 0,
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a�sT � sq��H1W 2�0; t� � H2W 2�l; t�� �
Z l

0

f�W �x; t�

� sqWt�x; t��2 � a�sT � sq�W 2
x �x; t�g dx

6 a�sT � sq��H1W 2�0; 0� � H2W 2�l; 0�� �
Z l

0

f�W �x; 0�

� sqWt�x; 0��2 � a�sT � sq�W 2
x �x; 0�g dx � 0 �46�

by using the initial conditions in (45). This requires, as

a; sT ; sq;H1 and H2 are all positive de®nite,

Wx�x; t� � 0 �47�
and

W �x; t� � sqWt�x; t� � 0: �48�
Therefore, W is independent of x [Eq. (47)]. The general

solution of (48) is thus

W �x; t� � ceÿ�t=sq� �49�
with c as a constant. Applying the initial condition

W �x; 0� � 0 yields

c � 0: �50�
Therefore,

W �x; t� � 0 �51�
i.e.,

T1�x; t� � T2�x; t�: �52�
However, T1 and T2 are any two solutions of (4) so that

we conclude that the solution of (4) is unique.

Similarly, we can also establish the uniqueness for the

other combinations of boundary conditions.

2.4. Stability

We establish the stability with respect to the initial

conditions in the following stability theorem.

Stability theorem. If

j/�x�j6 �; �53�

jw�x�j6 �; �54�

and

o/
ox

���� ����6 �; �55�

the solution T �x; t� of (4) satis®es

jT �x; t�j6C�: �56�
Here, � is a small positive constant, and C is a nonnegative

constant.

Proof. For the case with the Robin condition at both

x � 0 and x � l, (43) yields, for (4) when t > 0 and

t0 � 0,

a�sT � sq��H1T 2�0; t� � H2T 2�l; t��

�
Z l

0

f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2
x �x; t�g dx

6 a�sT � sq��H1/
2�0�H2/

2�l��

�
Z l

0

f�/�x� � sqw�x��2 � a�sT � sq�/2
x�x�g dx

6 a�sT � sq��H1�
2 � H2�

2�

�
Z l

0

f��� sq��2 � a�sT � sq��2g dx � M�2; �57�

where Eqs. (53)±(55) have been used and

M � a�sT � sq��H1 � H2� � ��1� sq�2 � a�sT � sq��l:
�58�

This yields

a�sT � sq�H1T 2�0; t�6M�2 �59�

Table 2

g�t� for nine combinations of boundary conditions

x � 0 x � l g�t�
Dirichlet Dirichlet

R l
0
f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2

x �x; t�g dx

Dirichlet Neumann
R l

0
f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2

x �x; t�g dx

Dirichlet Robin a�sT � sq�H2T 2�l; t� � R l
0
f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2

x �x; t�g dx

Neumann Dirichlet
R l

0
�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2

x �x; t�
n o

dx

Neumann Neumann
R l

0
f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2

x �x; t�gdx

Neumann Robin
R l

0
f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2

x �x; t�g dx

Robin Dirichlet a�sT � sq�H1T 2�0; t� � R l
0
f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2

x �x; t�g dx

Robin Neumann
R l

0
f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2

x �x; t�g dx

Robin Robin a�sT � sq��H1T 2�0; t� � H2T 2�l; t�� � R l
0
f�T �x; t� � sqTt�x; t��2 � a�sT � sq�T 2

x �x; t�g dx
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andZ l

0

a�sT � sq�T 2
x dx6M�2; �60�

which are equivalent to

jT �0; t�j6M1� �61�
andZ l

0

T 2
x �x; t� dx6M2�

2: �62�

Here,

M1 �
��������������������������

M
a�sT � sq�H1

s
�63�

and

M2 � M
a�sT � sq� : �64�

As [17],Z l

0

jfgj dx6

������������������Z l

0

f 2 dx

s ������������������Z l

0

g2 dx

s

we haveZ l

0

jTx�x; t�j dx6

����������������������������Z l

0

T 2
x �x; t� dx

s �����������������Z l

0

l2 dx

s

�
�������������������������������
l
Z l

0

T 2
x �x; t� dx

s
6

��������
lM2

p
� �65�

in which (62) has been used.

Also,

T �x; t� �
Z x

0

Tx�x; t� dx� T �0; t�: �66�

Therefore,

T �x; t�j j6
Z x

0

Tx�x; t�j j dx� T �0; t�j j

6
��������
lM2

p
��M1� � C�; �67�

where

C �
��������
lM2

p
�M1: �68�

Similarly, we can also prove the theorem for the other

combinations of boundary conditions. It is interesting to

note that (55) is also needed for the stability in addition

to (53) and (54).

3. Solution structure

In this section, we develop two solution theorems

expressing solutions of

1
a Tt�p; t� � sq

a Ttt�p; t� � DT �p; t�
�sT

o
ot DT �p; t�; X� �0;�1�;

L�T ; Tn�joX � 0;
T �M ; 0� � /�p�; Tt�p; 0� � 0

8>><>>: �69�

and

1
a Tt�p; t� � sq

a Ttt�p; t� � DT �p; t�
�sT

o
ot DT �p; t� � f �p; t�; X� �0;�1�;

L�T ; Tn�joX � 0;
T �p; 0� � 0; Tt�p; 0� � 0

8>><>>: �70�

in terms of the solution of

1
a Tt�p; t� � sq

a Ttt�p; t� � DT �p; t�
�sT

o
ot DT �p; t�; X� �0;�1�;

L�T ; Tn�joX � 0;
T �p; 0� � 0; Tt�p; 0� � w�p�:

8>><>>: �71�

Here, p denotes a point in the space domain X with

the boundary oX, D the Laplacian, Tn the normal de-

rivative of T , L�T ; Tn� represents linear functions of T
and Tn, and L�T ; Tn�joX � 0 denotes homogeneous

boundary conditions. Note that commonly used Di-

richlet, Neumann and Robin boundary conditions are

the special cases of the linear function L. We limit the

present work to the case that f ;/ and w satisfy con-

ditions for well-posedness and that the order of dif-

ferentiation is interchangeable for some high-order

partial derivatives of T with respect to the time and

spatial coordinates.

Theorem 1. Let W �w; p; t� denote the solution of (71). The
solution of (69) can be written as

T1�p; t� � 1

sq
W �/; p; t�
�

� sq
oW �/; p; t�

ot
� W �/1; p; t�

�
;

�72�
where

/1 � ÿasT D/�p�: �73�

Proof. As W �w; p; t� is the solution of (71), we have

1
a

o
ot W �/; p; t� � sq

a
o2

ot2 W �/; p; t�; X� �0;�1�;
ÿDW �/; p; t� ÿ sT

o
ot DW �/; p; t� � 0;

L W �/; p; t�; o
on W �/; p; t�� ���

oX � 0;

W �/; p; 0� � 0; o
ot W �/; p; 0� � /�p�

8>>>>><>>>>>:
�74�

and

1
a

o
ot W �/1; p; t� � sq

a
o2

ot2 W �/1; p; t�; X� �0;�1�
ÿDW �/1; p; t� ÿ sT

o
ot DW �/1; p; t� � 0;

L W �/1; p; t�; o
on W �/1; p; t�

� ���
oX
� 0;

W �/1; p; 0� � 0; o
ot W �/1; p; 0� � /1�p�:

8>>>>><>>>>>:
�75�
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Hence

1

a
o
ot

T1 � sq

a
o2

ot2
T1 ÿ DT1 ÿ sT

o
ot

DT1

� 1

sq

1

a
oW �/; p; t�

ot

�
� sT

a
o2W �/; p; t�

ot2
ÿ DW �/; p; t�

ÿ sT
o
ot

DW �/; p; t�
�
� o

ot
1

a
oW �/; p; t�

ot

�
� sq

a
o2W �/; p; t�

ot2
ÿ DW �/; p; t� ÿ sT

o
ot

DW �/; p; t�
�

� 1

sq

1

a
oW �/1; p; t�

ot

�
� sq

a
o2W �/1; p; t�

ot2

ÿ DW �/1; p; t� ÿ sT
o
ot

DW �/1; p; t�
�
� 0

which indicates that the T1 in (72) satis®es the equation

in (69).

Also,

L T1;
o
on

T1

� �
� L

1

sq
W �/; p; t�
��

� sq
oW �/; p; t�

ot

� W �/1; p; t�
�
;

1

sq

o
on

W �/; p; t�
�

� sq
oW �/; p; t�

ot
� W �/1; p; t�

��
� 1

sq
L W �/; p; t�; o

on
W �/; p; t�

� �
� o

ot
L W �/; p; t�; o

on
W �/; p; t�

� �
� 1

sq
L W �/1; p; t�;

o
on

W �/1; p; t�
� �

and

L T1;
o
on

T1

� �����
oX

� 1

sq
L W �/; p; t�; o

on
W �/; p; t�

� �����
oX

� o
ot

L W �/; p; t�; o
on

W �/; p; t�
� �����

oX

� 1

sq
L W �/1; p; t�;

o
on

W �/1; p; t�
� �����

oX

� 0

in which boundary conditions in (74) and (75) have been

used. This indicates that the T1 in (72) satis®es the

boundary condition in (69).

Finally, by (74) and (75),

T1�p; 0�

� 1

sq
W �/; p; t�
�

� sq
oW �/; p; t�

ot
� W �/1; p; t�

�����
t�0

� 1

sq
W �/; p; 0�
�

� sq
oW �/; p; 0�

ot
� W �/1; p; 0�

�
� oW �/; p; 0�

ot
� /

and

o
ot

T1�p; t�jt�0

� 1

sq

o
ot

W �/; p; t�
�

� sq
oW �/; p; t�

ot
� W �/1; p; t�

�����
t�0

� 1

sq

o
ot

W �/; p; t�
�

� sq
oW �/; p; t�

ot

�����
t�0

� /1�p�
sq

� a
sq

DW �/; p; t�
�

� sT
o
ot
�DW �/; p; t��

�����
t�0

� /1�p�
sq

� a
sT

sq
D/�p� � 1

sq
/1�p� � 0:

Therefore, the T1 in (72) also satis®es initial conditions in

(69).

Theorem 2. Let W �w; p; t� denote the solution of (71). The
solution of (70) can be written as

T2�p; t� �
Z t

0

W �fs; p; t ÿ s� ds; �76�

where

fs � a
sq

f �p; s�: �77�

Proof. As W �w; p; t� is the solution of (71), we have

1
a

o
ot W �fs; p; t ÿ s� � sq

a
o2

ot2 W �fs; p; t ÿ s�; X� �0;�1�;
ÿDW �fs; p; t ÿ s� ÿ sT

o
ot DW �fs; p; t ÿ s� � 0;

L W �fs; p; t ÿ s�; o
on W �fs; p; t ÿ s�� ���

oX
� 0;

W �fs; p; t ÿ s�jt�s � 0; o
ot W �fs; p; t ÿ s� jt�s� a

sq
f �p; s�:

8>>>>>><>>>>>>:
�78�

Therefore,

1

a
o
ot

T2 � sq

a
o2

ot2
T2 ÿ DT2 ÿ sT

o
ot

DT2

� 1

a
o
ot

Z t

0

W �fs; p; t ÿ s� ds� sq

a
o2

ot2

Z t

0

W �fs; p; t ÿ s�

� dsÿ D
Z t

0

W �fs; p; t ÿ s� dsÿ sT

� o
ot

D
Z t

0

W �fs; p; t ÿ s� ds

� 1

a

Z t

0

oW �fs; p; t ÿ s�
ot

ds

�
� W �fs; p; t ÿ s�js�t

�
� sq

a

Z t

0

o2W �fs; p; t ÿ s�
ot2

�
� oW �fs; p; t ÿ s�

ot

����
s�t

�
ÿ D

Z t

0

W �fs; p; t ÿ s� dsÿ sT D
o
ot

Z t

0

W �fs; p; t ÿ s� ds
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�
Z t

0

1

a
oW �fs; p; t ÿ s�

ot
ds�

Z t

0

sq

a

� o2W �fs; p; t ÿ s�
ot2

ds� f �p; t�

ÿ
Z t

0

DW �fs; p; t ÿ s� ds

ÿ
Z t

0

sT D
oW �fs; p; t ÿ s�

ot
ds � f �p; t�

which indicates that the T2 in (76) satis®es the equation

in (70).

Also,

L T2;
o
on

T2

� �����
oX

� L
Z t

0

W �fs; p; t
�

ÿ s� ds;
o
on

Z t

0

W �fs; p; t ÿ s� ds

�����
oX

� L

"Z t

0

W �fs; p; t:ÿ s� ds;
Z t

0

o
on

W �fs; p; t ÿ s� ds

#�����
oX

�
Z t

0

L W �fs; p; t
�

ÿ s�; o
on

W �fs; p; t ÿ s�
�����

oX

ds � 0

in which the boundary condition in (78) has been used.

Therefore, the T2 in (76) satis®es the boundary condition

in (70).

Finally,

T2�p; 0� �
Z 0

0

W �fs; p; t ÿ s� ds � 0

and, by (78)

o
ot

T2�p; t�jt�0

�
Z t

0

o
ot

W �fs; p; t
�

ÿ s�ds� W �fs; p; t ÿ s�js�t

�����
t�0

� 0:

Therefore, the T2 in (76) also satis®es initial conditions

in (70).

By Theorems 1 and 2 and the principle of superposi-

tion, we can express the solution T �p; t� of

1
a Tt�p; t� � sq

a Ttt�p; t� � DT �p; t�
�sT

o
ot DT �p; t� � f �p; t�; X� �0;�1�

L�T ; Tn�joX � 0;
T �p; 0� � /�p�; Tt�p; 0� � w�p�

8>><>>: �79�

in term of W as

T �p; t� � W �w; p; t� � 1

sq
W �/; p; t�
�

� sq
oW �/; p; t�

ot
� W �/1; p; t�

�
�
Z t

0

W �fs; p; t ÿ s� ds �80�

with /1 and fs de®ned by Eqs. (73) and (77).

4. Concluding remarks

The well-posedness is examined for 1D dual-phase-

lagging heat conduction equations under Dirichlet,

Neumann or Robin boundary conditions. The method

of separation of variables is used to ®nd a solution. The

inequality (43) developed in the present work is em-

ployed to establish its uniqueness and stability with re-

spect to initial conditions. This is of fundamental

importance for using dual-phase-lagging heat conduc-

tion equations in microscale heat conduction.

Two solution structure theorems are developed for

dual-phase-lagging heat conduction equations under

linear boundary conditions. Contributions (to the tem-

perature ®eld) of the initial temperature distribution and

the source term are shown to be expressible by that of

the initial time-rate change of the temperature. This re-

veals the solution structure and signi®cantly simpli®es

the development of solutions of dual-phase-lagging heat

conduction equations.
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